Polygonal approximation of plane convex bodies

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cross-section Body, Plane Sections of Convex Bodies and Approximation of Convex Bodies, Ii*

We compare the volumes of projections of convex bodies and the volumes of the projections of their sections, and, dually, those of sections of convex bodies and of sections of their circumscribed cylinders. For L ⊂ R a convex body, we take n random segments in L and consider their ‘Minkowski average’ D. For fixed n, the pth moments of V (D) (1 ≤ p < ∞) are minimized, for V (L) fixed, by the ell...

متن کامل

Fine Approximation of Convex Bodies by Polytopes

We prove that for every convex body K with the center of mass at the origin and every ε ∈ ( 0, 12 ) , there exists a convex polytope P with at most eO(d)ε− d−1 2 vertices such that (1− ε)K ⊂ P ⊂ K.

متن کامل

Random Polytopes, Convex Bodies, and Approximation

Assume K ⊂ R is a convex body and Xn ⊂ K is a random sample of n uniform, independent points from K. The convex hull of Xn is a convex polytope Kn called random polytope inscribed in K. We are going to investigate various properties of this polytope: for instance how well it approximates K, or how many vertices and facets it has. It turns out that Kn is very close to the so called floating body...

متن کامل

Gradient algorithms for polygonal approximation of convex contours

The subjects of this paper are descent algorithms to optimally approximate a strictly convex contour with a polygon. This classic geometric problem is relevant in interpolation theory and data compression, and has potential applications in robotic sensor networks. We design gradient descent laws for intuitive performance metrics such as the area of the inner, outer, and “outer minus inner” appr...

متن کامل

Plane Sections of Convex Bodies of Maximal Volume

Let K = {K0, ...,Kk} be a family of convex bodies in R , 1 ≤ k ≤ n−1. We prove, generalizing results from [9], [10], [13], [14], that there always exists an affine k-dimensional plane Ak ⊆ R , called a common maximal k-transversal of K, such that for each i ∈ {0, ..., k} and each x ∈ R Vk(Ki ∩Ak) ≥ Vk(Ki ∩ (Ak + x)), where Vk is the k-dimensional Lebesgue measure in Ak and Ak + x. Given a famil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1975

ISSN: 0022-247X

DOI: 10.1016/0022-247x(75)90125-0